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We have made a detailed study of scaling in the ideal Bose gas in order to 
resolve the apparent inconsistencies that occur in the scaling laws when the 
dimensionality of the system is greater than four. We have found that there 
are not one, but two critical exponents associated with the specific heat 
singularity that appear in the scaling laws. We have proposed a modification 
of the scaling laws which is correct in any dimension. 
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1.  I N T R O D U C T I O N  

The scaling hypothesis,  (1-5)'2 which has been highly successful in providing a 

unified approach  to the study of  equi l ibr ium critical phenomena,  predicts 

certain relations among  the critical point  exponents.  These relations, known 

as the scaling laws, can be divided into two categories:  those relations that  

are dependent  on the dimensional i ty  d, and those relations that  are indepen- 

dent of  dimensionali ty.  The  validity o f  the dimensional i ty-dependent  laws 

has sometimes been quest ioned because o f  apparent  inconsistencies which 

occur in the ideal Bose gas (or, a lmost  equivalently,  in the spherical model),  

when the dimensional i ty  is greater  than four, and because numerical  studies 

show that  the critical exponents  in the three-dimensional  Ising model  may 
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fail to satisfy these dimensionality-dependent laws. In this paper we will only 
be concerned with the breakdown of  scaling when d > 4. 

The inconsistencies at d > 4 have been considered by other authors. 
StelF 8,~ lms proposed a theory of weak scaling in which he argues that the 
breakdown of scaling in higher dimensions can be interpreted as the emer- 
gence of a second correlation length. By introducing a parameter into the 
scaling relations which describes the behavior of the second correlation 
length, he is able tO make the scaling laws consistent in all dimensions. 
Domb ~1~ has suggested that the scaling law dv = 2A + 7 (the critical point 
exponents v, A, and 7 will be defined below), which relates the behavior of 
correlations to the behavior of thermodynamic functions in the critical 
region, is an approximation rather than an exact relation and that this 
approximation becomes worse as the dimensionality increases. 

In order to resolve the inconsistencies in the scaling laws when the 
dimensionality is greater than four, we have made a detailed study of scaling 
in the ideal Bose gas. We have chosen to study this particular model, which is 
virtually equivalent to the spherical model in its properties near the critical 
point, because it is one of the few models possessing a first-order phase 
transition which is exactly solvable in all dimensions. It is also a model for 
which the scaling relations hold exactly when d < 4 but for which the scaling 
relations break down when d > 4. 

In this paper our approach will be to consider the physical arguments 
that have been put forth as a basis for scaling and which predict the scaling 
relations? We will then examine the validity of these arguments, compare 
them in detail with the known properties of the Bose gas, and see why they 
are inapplicable when d > 4. We will then propose a modification of the 
scaling laws which is in accordance with what we have learned from the ideal 
Bose gas, and is consistent in all dimensions. 

The critical exponents that we will use are defined in Table I and the 
scaling relations that we will discuss are listed in Table II. Since these relations 
are not all independent, one can examine an independent subset from which 
the others can be derived. We have chosen to study the subset consisting of 
the first four relations primarily because each one of them may be obtained 
from basic theoretical arguments. The fifth relation, which is a dependent 
relation, is also derivable on the basis of a theoretical argument and will also 
be examined in detail. 

In Section 2 we will describe the physical arguments that underlie the 
first five scaling relations on Table I and in Section 3 we will review those 
properties of the ideal Bose gas that are necessary for our discussion. Readers 
familiar with the scaling arguments and with the ideal Bose gas may proceed 
to Section 4, where we apply these arguments to the ideal Bose gas. 

3 We will not discuss scaling from the renormalization-group point of view. 
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Table I. Def ini t ion of Crit ical Exponents a 

E x p o n e n t  Def in i t ion  

C n ~ t  -~  t - + 0 + , h  = 0 
fl m ~ ( - t )  a t --+ 0 - ,  coexis tence  cu rve  

h ~ [ml ~ sgn(m)  t = 0 
~" x~ ~ t -~ t - + O + , h  = 0 

v ~ t -~ t - + O + , h  = 0 

71 G(r )  ~ r -(a-2+n) r - ->oo ,  t = 0 

A ~ / ~ h  ~ ( - t )  -a  t - + O - ,  h = 0 

H e r e  m is the  magne t i za t i on ,  h is the  mag n e t i c  field, t is the  
r educed  t e m p e r a t u r e ,  Ch is the  specific hea t  at c o n s t a n t  field, 
x r  is the  i s o t h e r m a l  suscept ibi l i ty ,  ~ is the  co r r e l a t i on  length ,  
G(r)  is the  pa i r  co r r e l a t ion  func t ion ,  and  ~ is the  G i b b s  free 
energy.  

2. THE T H E O R E T I C A L  A R G U M E N T S  W H I C H  PREDICT  THE 
SCALING RELATIONS 

We will now review the general theoretical arguments that have been 
used in the past to justify the first five scaling relations on Table I. In de- 
scribing these arguments we will switch back and forth between fluid language 
and magnetic language (see Ref. 7), depending on what is the most convenient 
way to state these arguments and what relates most directly to the Bose gas. 

2.1. The Relations ~ = 1 + y/fi and a + 2/3 + 7 = 2; Homogene i ty  
or Scaling Hypothesis for  the Free Energy 

The scaling relations ~ = 1 + 7//3 and ~ + 2/3 + 7' = 2 may be obtained 
from a homogeneity or scaling hypothesis for the thermodynamic free 
energy. (l-v) The hypothesis is that the singular part of the free energy becomes 
a generalized homogeneous function of the magnetic field h and the reduced 
temperature t in the vicinity of the critical point. Recall that a generalized 
homogeneous function is defined (7) as one which has the following property: 

f (a~ Ay) = Apf(x, y) 

Table II. The Scaling Relations 

2. = + 2/3 + ~ , =  2 
3. ( 2 -  7 / )v=  y 
4. d v =  2 - a  

5. d v - y = 2 f l  

6, v ( d -  2 + 7/) = 2fi 

7. 2 -- "q = a (3  - 1) /(s  + l) = a~,/(2~ + y) 

8. d -  2 + -q = 2d/(3 + 1) = 2d/3/(2 - a) 
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I t  can be shown tha t  i f f i s  a generalized homogeneous  function of  its variables, 
then it may  be written in the fo rm 

f (x ,  y) = y 'F  = ~.~--77-a1 

The homogenei ty  hypothesis  says that  if we take the free energy and subtract  
off  all nonsingular  terms, then the remaining par t  o~(h, t) will have the 
following form near  the critical point:  

~ ( h ,  t ) =  t v F ( h )  = h P ' a f f ( ~ )  (1) 

where a and p are numbers  and F is an undetermined function. F r o m  this 
we can obtain homogeneous  forms for  the magnetizat ion,  susceptibility, and 
specific heat  by differentiating with respect to the appropr ia te  variable:  

M(h, t) = Ok(h, O/Oh 

x(h, t) = O2~(h, t)/eh z 

C(h, t) = O~o~(h, t)/OT 2 

We can then determine the exponents  ~,/3, y, and 8 in terms of  p and a by 
compar ing  the resulting forms with the exponent  definitions (see Table  I). 
I f  we eliminate p and a f rom our expressions for the exponents,  we obtain the 
scaling relations 

8 = 1 + (y/fl), a + 2 f i + y = 2  

It  is impor tan t  to keep in mind that  the specific heat  exponent  which 
enters this second relation is defined as 

02 
at---- 5 [~,,~'(h, t) - ~on~*=gular (h, t)l ~ t - %  (2) 

where f f  is the free energy and ~on~i=g~lar is the nonsingular  par t  o f  the free 
energy. Here  we have put  a subscript h on the exponent  a in order  to remind 
ourselves tha t  this exponent  is associated with a homogenei ty  argument .  
When  the specific heat  exponent  is defined in this way, the second scaling 
relation will be satisfied if o~(h, t) is a homogeneous  function of  its variables. 
To  emphasize this, we may  rewrite the second scaling relation as ~ 

a h + 2 / 3 + y = 2  

4 Strictly speaking, these two scaling relations should be ~u '+ 2/~ + y ' =  2 and 
8 = 1 + y'//~, where a prime indicates that the exponent is defined for T < T~. How- 
ever, a consequence of the homogeneity hypothesis is that the exponents above and 
below T~ must be equal, so that the relations as they are written without the primes are 
correct. One exception that might occur is that the second derivative with respect to h 
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I t  is also worthwhile not ing that  there are a number  o f  equivalent ways 
o f  formulat ing a homogenei ty  hypothesis for the thermodynamic  variables 
and thereby obtaining these relations/1-5~ In particular, it can be shown that  
if the magnetic field is a homogeneous  function o f  the magnetizat ion and 
reduced temperature, then the first two relations will be satisfied. 

2.2.  T h e  R e l a t i o n  7 = (2 - ~)~; H o m o g e n e i t y  H y p o t h e s i s  f o r  t h e  
C o r r e l a t i o n  F u n c t i o n  

The relation 7 = (2 - ~7)v can also be derived on the basis o f  a scaling or  
homogenei ty  hypothesisJ  11~ This homogenei ty  hypothesis concerns the pair  
correlation function G(r, t) in zero field and says that  G(r, t) is a generalized 
homogeneous  function at large distances and in the vicinity o f  the critical 
point, and therefore that  it may  be written in the scaling form 

G(r, t) ~ r-~a-2+~g(r/~), r >> ro (3) 

where ~ is the correlation length, ~: ~ t-~,  r0 measures the range o f  the 
dominant  interactions, and the function g(r/s satisfies certain conditions. 5 
To obtain the relation 7 = (2 - ~7)v, we note that  the susceptibility is given by 

= f G(r, t) dr X 

where dr is a volume element and the integral runs over all space. Since the 
susceptibility diverges as the critical point  is approached and the integrand 
G(r, t) is bounded,  we can conclude that the dominant  contr ibution to the 
integral comes from the behavior o f  G(r, t) at large distances. But then G(r, t) 
in the integral may be replaced by its asymptotic  form [Eq. (3)] and the result 
is an asymptotic  formula  for X that  holds in the ne ighborhood o f  the critical 
point. I t  is found that 

x ~ ~2-,  

which implies that  

~, = ( 2  - n ) ~  

This is often referred to as Fisher's relation. 

of the function F(h/t ~) in Eq. (1) is identically equal to zero f6r T < Tc and is variable 
for T > To. In this case the exponent ~," would not be defined. This is, in fact, what 
happens in the ideal Bose gas when d < 4. One still expects, however, that the relations 
=h + 2 8 +  7 =  2 and 3 = 1 + 7/8 will be satisfied, although this will not be 
guaranteed. 
The conditions are that g(0) be finite and nonzero and that g(x) ~ x�89 -x as 
X ----~ 0 0 .  
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2 .3 .  T h e  R e l a t i o n  dv = 2 - 

The theoretical arguments ~12> that are usually cited as justification for 
this relation are the following: The approach to the critical point is charac- 
terized by a divergence in s the correlation range of spontaneous density 
fluctuations, and by a divergence in Cv, the specific heat at constant volume. 
It is reasonable to assume that these two phenomena are closely related and 
share a common origin. This assumption leads to the conclusion that the 
free energy density associated with a divergence in s should have the same 
magnitude as the free energy density associated with the divergence in Cv. 
It is further assumed that the free energy associated with the divergence in Cv 
is proportional to t 2-6 and that the free energy density associated with the 
divergence in ~: is proportional to kTl~ a. Since ~ diverges as t -~ near the 
critical point we obtain the relation dv = 2 - a. This is called the hyperscaling 
relation. 

2.4 .  T h e  R e l a t i o n  dv = 7 + 2[3 

This relation can be derived by combining the first four relations in 
Table II. It is of interest, however, because it can also be derived indepen- 
dently on the basis of general theoretical arguments ~12> which W e now describe. 
We consider a subvolume v in the interior of a bulk homogeneous fluid which 
is in equilibrium with its conjugate phase near the critical point. It is postulated 
that density fluctuations of the order of the density difference between the two 
equilibrium phases occur with high probability when the Size of the sub- 
volume becomes equal to ~:a. This implies that the mean-square fluctuation in 
the volume ~a is given by 

(Ape )  ~ ~ I p ~ -  pol ~ ~ t ~  (4) 

where pz and p~ are the densities of the two phases in equilibrium and/~ is the 
exponent describing the shape of the coexistence curve as defined in Table I. 
An alternative calculation of the mean-square density fluctuation yields the 
fifth relation as follows: The mean-square density fluctuation can be obtained 
in terms of the pair correlation function G(r, t) by assuming that the equation 

(Ap~) 2 = (1/v)f~ G(r, t )dr  = p2kTx/v 

is correct even when v is the microscopic volume ~a. The resulting expression 
(Aped) 2 will be asymptotically correct in the neighborhood of the critical 
point and gives 

(Aped) 2 ,,~ ta~-~ 
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Compar ing  this with Eq. (4) gives 

2 /~= d ~ - ~ ,  

which is the fifth relation. 

163 

3. T H E  T H E R M O D Y N A M I C  P R O P E R T I E S  OF T H E  I D E A L  B O S E  
G A S  

The thermodynamic  properties of  the ideal Bose gas in the ne ighborhood 
of  its transition have been studied in detail by Gunton  and Buckingham, (14'~5> 
who viewed the condensat ion as a cooperative transition. They introduced an 
order parameter  called the Bose moment  ~bo, which is equal to the square 
roo t  of  the density o f  particles in the gound state (the condensate), and an 
ordering field/z0, called the Bose field, which is the intensive variable con- 
jugate to the Bose moment .  The Bose moment  and Bose field are analogous 
to the magnetic moment  and magnetic field o f  a system which undergoes a 
ferromagnetic phase transition. As in the ferromagnetic case, the transition 
takes place only in zero field. 

We will first review Gun ton  and Buckingham's  derivation o f  the critical 
exponents f rom the asymptotic  behavior o f  the equation o f  state in the neigh- 
bo rhood  of  the transition. These critical exponents for the Bose gas along 
with their definitions are listed in Table III .  We will see that  this set o f  expo- 
nents, which comes f rom an exactly soluble model, does n o t  satisfy the scaling 
relations when d > 4. This will lead us in Section 4 to examine more closely 
the physical arguments which led to these scaling relations. 

Gunton  and Buckingham found that  the pressure o f  the ideal Bose gas is 
given by 

P (/z, fro, T) = -/zo2l/z + (/3,/a)- 1Fd/z + 1(--/Tff) (5) 

where #z is the chemical potential and ~2 = ( 2 r r h / m k T ) d .  The function F is 

Table III. Critical Exponents of the Ideal Bose Gas 

Exponent Definition Conditions d < 4 d > 4 

as ~ Co.,o ~ t -~s t -+0+,p .o  = 0 - ( 4  - d ) / ( d -  2) - ( d  - 4)/2 
fl ~o ~ (--t) a t - + 0 + ,  �89 �89 

coexistence curve 
3 /~0 ~ ~bo ~ t = 0 (d + 2 ) / (d -  2) 3 
7 x = k T  &bo/~tzo t -+ 0 + ,  izo = 0 2 / (d  - 2) 1 
v {: ~ t -  ~ t--~0+,/Zo = 0 1 / ( d -  2) �89 
"7 G B ( r ) ~ r  -(a-2+~) r---~oo, t = 0 , / i o = 0  0 0 

i 

The critical exponent ~ is more explicitly defined in Eq. (12). 
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defined by 

F~(x) = ~ n-~e -'~x, x >1 0 

and has the following asymptotic expansion when its argument  is smalF16~: 

F~(x) = F(1 - ~)x ~-1 + ~ (-1)"~(c, - n)x'~/n! (6) 
n = l  

where ~ is the Riemann zeta function. They also found that  the Bose moment  

is given by 
~0 = -t~o/t~ (7) 

and the density is given by 

0 = (~o//~) 2 + (T/Tc)a12Fd/2(-#u)/Fd12(O) (8) 

where the critical temperature T~ is a function o f  

p, T~(p) = 2zrh2/mk[p- iFal2(O)] 2Ia 

Equat ion (8) is a conservation equation for the density, with/z02/t~ 2 = ~b02 
representing the density of  particles in the ground state. The equation o f  state 
is found by solving this equation for t~o(~bo, T) and it can be shown that  a 
transition occurs only when/Zo = 0, as shown in Fig. 1. I f  we compare  Fig. 1 
with the phase diagram of  a ferromagnet  in the h-t plane; we can see that  an 
obvious analogy exists between the two systems. 

*o 

~ ~ f p . o  = const >0 

i  o=Oj\  o=O 
I (~=ol / ~ S-(P" <~ 

_ _ . ~ / ~ o  = const < 0  

Fig. 1. The equation of state of the ideal Bose gas is shown schematically in the tem- 
perature-density plane. The overall density p is fixed at a constant. This is analogous to 
the phase diagram of a ferromagnet, with the Bose moment and Bose field being analo- 
gous, respectively, to the magnetic moment and magnetic field. 
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Near the transition point where tLo, ~b0,/z, and t = [ T -  Tc(p)]/Tc(p) 
are small, the known expansions of the function F [Eq. (6)] are used to obtain 
the asymptotic behavior of  the equation of  state. The equation of state will 
depend on whether d is less than, equal to, or greater than four as follows: 

r ( l d t  + p-l~h2)z/~a-2~, d < 4 

I~o/kTc~o ..~ ~(�89 + O-14J2)/ln(�89 + p-1~2)-1, d = 4 (9) 
( ( �89 + p-~b2), d > 4 

Gunton and Buckingham also calculated the Bose moment correlation 
function GB(r, t) and found that it has the following form for large r and in 
the vicinity of the critical point (large ~:): 

GB(r, t)  ,~ r-(a-2~(r/~) ~a/2~- 1K(a/2~_l(r/~ ) (10) 

where K is a Bessel function of  the second kind and ~: is the correlation 
length and is identified as 

= ( -  ~1~) - llz = (fltZo/~o) - 1/z (11) 
The critical exponents found by Gunton and Buckingham are sum- 

marized in Table III. They are all defined for fixed density, and with the 
exception of t ,  for T > T~. When the dimensionality is less than four the 
exponents are dimensionality dependent but when the dimensionality is 
greater than four the exponents (with the exception of ~)  become dimen- 
sionality independent and take on their mean-field values. When d -- 4 the 
exponents are the same as for d > 4 but there are also logarithmic factors 
to be considered. In this paper we will not discuss the borderline dimension 
d = 4 .  

The specific heat Co.,o remains finite as t--~ + 0  but one of its tempera- 
ture derivatives may diverge as t ~ +0.  Accordingly, the exponent ~s is 
defined such that the first temperature derivative of Cp.,o to diverge is the 
ruth one, with 

c3mC/~Z m ~ t - %  -m (12) 

Thus c~ characterizes the dominant singularity in the specific heat, and 
corresponds to the usual definition of the specific heat exponent when cq is 
positive. 

4. THE A P P L I C A T I O N  OF THE SCALING A R G U M E N T S  TO THE 
IDEAL BOSE GAS 

We may now ask to what extent the scaling relations are satisfied by the 
set of exponents listed in Table III for the ideal Bose gas. If  we substitute 
these values for the exponents into the first four relations on Table II, we see 
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that they are all satisfied when the dimensionality is less than four but that 
when the dimensionality is greater than four the second relation no longer 
holds, i.e., 

~ +2/3 + 7 #  2 when d >  4 

for the ideal Bose gas. Naturally the remaining relations in Table II, which 
can be obtained by combining relations 1-3 with 4, will not be satisfied when 
d > 4 .  

An examination of the equation of state for the Bose gas, Eq. (9), reveals 
that is has a homogeneous form and that therefore the relations 3 = 1 + (7[/3) 
and a h + 2/3 + 7 = 2, where ~h is defined in Eq. (2), must be satisfied. The 
relation 8 = 1 + (7//3) is satisfied by the Bose gas in all dimensions. Since 
as + 2/3 + 7 r 2 when d > 4 in the Bose gas we must conclude that 

and that 

a ~ #  ~ when d >  4 

c*t~ = ~s when d < 4 

In order to" see why as and an are different when d > 4, we must look at 
the free energy of the ideal Bose gas in the neighborhood of the critical point. 
We consider the free energy 

~ ( p ,  ~o, T) = P0z, ~o, T) - pt* 

and hold the density fixed so that it becomes a function only of the Bose 
moment  and temperature. This free energy is analogous to the free energy 
per spin o~-(h, t) of  a magnetic system in the sense that it has analogous 
variables but with renormalization of exponents because of fixed p.(17) It  may 
be expanded near the critical point in terms of the inverse correlation length 
by using Eqs. (5), (6), and (11), 

o~(p,/~0, T) = o~(/z0, T) ~ ~0~0 + (/3;~a)-l[f-ar(d/2) + ~(d/2) 

+ ~ ( -  1)~2~(�89 - 1 - n)/n II 
n = 2  

+ (/3A~) - ~ ( d / 2 ) [ ( ~ d A )  ~ - 1]~-~ 

or, more simply, 

~(ffo,  7") ,,~ ffor + (flAa)-![const + 0(~ -a) + 0(~ -4) + O(~-2t) 
+ o ( ~  -~)  + ...l 

It  can easily be shown that the term ~ ~-2t is no larger than the term ~ ~-~. 
In order to determine the exponent an for the Bose gas, we must calculate 

the second derivative of  the quantity o~(~o, T ) -  o~o.,~.gu~a~(tzo, T) and 
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evaluate  it a long the cri t ical  i sochore  (since we are calculat ing Co,.o at  t~o = 0). 
Nea r  the cri t ical  po in t  

~ ( ~ 0 ,  T) - ~onsin~ula, ~ ( ~ ) - 1 [ ~ - ~  + ~-4 + ...1 
[ta~fl(l~o/t ~)  § t4vf2(t~o/t~6)] (13) 

to leading order ,  where f l  and  f2 are funct ions which are finite at  ~ and  
where we have d ropped  the mult ipl icat ive constants .  W e  have also d r o p p e d  
the term ~~or  since it will not  cont r ibu te  anyth ing  to the specific heat  when 

t~o = 0. 
We can see immedia te ly  tha t  a compet i t i ton  exists between these two 

terms in the free energy so tha t  when d < 4 the first term will domina te  and 
when d > 4 the second term will dominate .  The  specific hea t  will be 

C - C~o~i~g~ = 02[~(/z0, T) - ~ons~ng,~a~llOT 2 
ta~-2fl(l~o/'tB~) + t4~-2f2(l~o/tB~) (14) 

SO tha t  on the cri t ical  i sochore  

C - Cno~s~g~a~ "~ ta~-2f~(O), d < 4 
~ t4~-2fa(0), d > 4 

F r o m  this it  follows tha t  the exponent  ah, which is de te rmined  by the domi-  
nan t  term in Eq. (14), will be 

% = d r -  2--- - ( 4 -  d ) / ( d -  2), d <  4 
= 4 v - 2 = 0 ,  d > 4  

where we have inserted the values v = 1 / ( d -  2) for  d < 4 and v = �89 for  
d > 4 f rom Table  III .  

We  can also ob ta in  the exponent  a~ [defined in Eq. (12)] f rom Eq. (14) 
and we find tha t  

% = d r - 2 - -  - ( 4 -  d ) / ( d - 2 ) ,  d <  4 
-- ( 4 - d ) / 2 ,  d >  4 

That  is, if  we differentiate Eq. (14) unti l  one o f  the terms diverges, we will 
find that  it is always the first term which contains  the divergence. 6 

We see then tha t  when d < 4, the d o m i n a n t  te rm in ~( /~0,  T) (which is 

what  the exponent  ah PiCks out)  will be the same as the leading te rm singular  
in the t empera tu re  (which is wha t  the exponent  a~ picks out). However ,  when 
d > 4 the d o m i n a n t  term in Eq. (13) will not be the same as the leading te rm 
singular  in the temperature .  The  exponents  ah and a~ therefore  describe 

6 This occurs even when d is an even integer. This is because the first two terms in the 
expansion for F [see Eq. (6)] diverge separately when ~ is an integer but combine to 
yield a term proportional to x ~ -~ log x. See Ref. 16. In this case the term proportional 
to t a"-2 in the free energy would be multiplied by a term of the order of log t. 
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different aspects of  the behavior of  the specific heat and they cannot in 
general be used interchangeably. 

One question that might be raised is whether the second term in Eq. (14), 
which is proportional to t~ B6) when d > 4, should be included in the 
term C~o~s~g~a~r on the left-hand side of Eq. (14), since at first sight it appears 
to be nonsingular. It  can be shown, however, that although this term is 
nonsingular in the temperature variable, the function f2 contains a singularity 
with respect to the field variable/Zo and is, in fact, the origin of  the suscepti- 
bility divergence when d > 4. Therefore it should not be included in the term 
C~o~sin~u~r and our determination of % is correct. 

We can ask further whether it is the exponent an or as which belongs in 
the relation dv = 2 - a. By inspection of  Eqs. (13) and (14) we can see that 
the term in the free energy that is proportional to ~:-a is always the term that 
contains the leading singularity with respect to the temperature variable, so 
that this term will also be proportional to t~-%. Thus the fourth relation on 
Table II  should read 

d r = 2  - ~ s  

The reasoning that we quoted earlier for the fourth relation dv = 2 - 

is now seen to be correct only if one recognizes that it is the term in the free 
energy density associated with the exponent as that is proportional to k T / ~  a 

for all d rather than the free energy density itself which is proportional to 
k T [ ~  ~. 

The relation 7' = (2 - ~)v is always satisfied by the ideal Bose gas. This 
is not surprising since this relation was obtained by assuming that the corre- 
lation function has a homogeneous form and the Bose gas does indeed have 
the postulated homogeneous form [compare Eqs. (3) and (10)]. 

We have seen that the first four scaling relations in Table II  should read 

3 = 1 + r / f l ,  ah + 2 f l + 7 ' = 2 ,  ( 2 - n ) v = 7 ' ,  d v = 2 - a s  

When the dimensionality is less than four ah = ~,, so that we can just call 
these two exponents % as is normally done, and we can then combine these 
relations to give us the rest of  the relations in Table I. However, when d > 4, 
ah ~ % and therefore any relations which were derived by combining the 
first four relations and assuming that % and a, are indistinguishable will not 
be valid for all dimensions. The correct form for the last four scaling relations 
in Table II  include a term proportional to % - % as follows: 

dv - 7" = 2fl + (a~ - %) 

v ( d -  2 + rl) = 2fl + (~h - c~) 

2 - '7 = a(8 - 1)/[8 + 1 + (-h - ~s)/fi] 

= & / ( 2 / ~  + 7' + ~h - ~) 
d -  2 + ~ = [2 + (ah - e~) d/fl]/[8 + 1 + (~h - as)/fl] 

= [2dfi + (an - ~ , ) g ] / ( 2  - ~,) 
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This leaves us with the problem of explaining why the physical arguments 
described previously for the fifth relation are in error when d > 4 and how 
they can be amended to include the extra an - a~. The solution to this 
problem is elusive because the specific heat does not enter into the argument 
at all. For the Bose gas, the point at which the argument breaks down is the 
assumption (Ap~)2 ~ ( p ~ -  pg) 2 [Eq. (4)] rather than the assumption 
(Apr ~ ,-~ t a~- y. We find that the mean square density fluctuations in a volume 
of size ~ ~a are smaller than (pz - pg)2 or more specifically 

Thus, for the ideal Bose gas we have confirmed StelFs conclusion that [Ref. 9, 
especially Eqs. (11), (15), and (16)] 

withp > 0inhigherdimensions.  Useofour2 f l  + (ah - %)/fi = v(d - 2 + ~) 
further confirms his p = e(d - 2 -k ~), where e = v/fl in the Bose gas. In 
this context, Stell defines his "second length" as the A for which 

(ApA~) ~ = (p,-  p.)~ 

is satisfied. 

S U M M A R Y  A N D  C O N C L U S I O N S  

We have sought to understand why certain of  the scaling relations are not 
satisfied by the ideal Bose gas (and therefore by the spherical model) when the 
dimensionality is greater than four. We have found that this occurs because 
of a competitition that exists between two leading terms in the free energy 

~(/L0, T)  - O~nonsingular " ~  ta~l(l~o/t Bo) + t4~f2(Tro/t ~)  

as the critical point is approached. When the dimensionality is less than four, 
the term proportional to tav dominates, as is consistent with the assumption 
(see Section 2.3) that the free energy be proportional to kT/~  a. When the 
dimensionality is greater than four, the term proportional to t ~v dominates 
and the former assumption is no longer correct. 7 

A careful examination of  the physical arguments reveals that the scaling 
relations will continue to hold even when ~ is not proportional to kT / s  a, 
if we recognize that there are not one, but two specific heat exponents which 
belong in the scaling relations. These two exponents, which we have called as 
and a~, describe different aspects of  the specific heat and are associated with 
different terms in the free energy when d > 4. Each exponent has its own role 

A similar argument that involves a related competition in G(r, h, t) for fixed small r 
is given by Stell. (10~ 
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in the scaling relations; the exponent ah belongs in the scaling relation 
% + 2fi + y = 2 and the exponent % belongs in the scaling relation dv = 

2 - %. When the dimensionality is less than four, the exponents % and % 
are equal since they are associated with the same term in the free energy and 
therefore the scaling relations take on the usual form with a single specific 
heat exponent a (as given in Table I). When the dimensionality is greater than 
four, the exponents ~h and as are not equal since they are associated with 
different terms in the free energy and therefore the scaling relations take the 
form given below. 

The exponents % and % are defined in the following way: I f  the first 
temperature derivative of the specific heat to diverge is the mth one, then as 
is given by 

amC/aT, .  ~ t - % - m  

The exponent ah is defined as 

02(~(/*o, T) - ~o~,~gu,~)/aT 2 ~ t-~h 

One can see therefore that the exponent <s picks out the leading term in the 
specific heat that is singular with respect to the temperature, while the 
exponent a h just picks out the leading term in the singular part  of  the specific 
heat. Here, by a singular function we mean that one of the function's deriva- 
tives with respect to either the temperature or the field (or both) diverges. 
When d > 4, the leading term in the singular part  of  the specific heat is not 
the same as the leading term in the specific heat that is singular with respect 
to the temperature. This is because the leading term in the singular part  of  the 
specific heat is analytic in the temperature but singular in the field. For  this 
reason as and ah are not the same when d > 4. 

The correct form for the scaling relations is 

3 = 1 + y / f i ,  % + 2 1 3 + y  = 2, ( 2 - ~ ) v  = y ,  d r = 2 -  % 
clv - y = 2f l  + (ah - a~), v ( d -  2 + ~)  = 2f i  + ( ~  - a~) 

2 - v = d(8 - 1)/[a + 1 + ( ~  - <~OlJ] 
= & / [ 2 ~  + y + <~,~ - <<j 

d -  2 + ~ = [2 + (<~ - <~D d i~ ] l [a  + 1 + (<~ - ~DI~] 
= [2dfi  + d ( %  - %)]/(2 - %) 

This is consistent in all dimensions and is correct for the Bose gas. 
We think that it (or appropriate generalizations) will also be satisfied by any 
of the models which have heretofore been thought to violate scaling in 
greater than four dimensions. This includes the spherical model, the spherical 
model with long-range interactions, and Ornstein-Zernike systems. (~8'19) 

Finally, we would like to comment on the relationship between the 
scaling form of the correlation function and the scaling form of the free 
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energy for the Bose gas. It  can be shown in general (m) that if the correlation 
function in nonzero field G(r, h, t) has a scaling form, then the free energy 
~ ( h ,  T) will also have a scaling form. More explicitly, if G(r, h, T)  has the 
scaling form 

G(r, h, T) ,,~ r - (a-  2 +~)D(r/t-v, h / t~ )  

then the free energy will have the scaling form 

~ ( h ,  T)  ,.~ t 2 - % W ( h / t  B6) 

where 2 - ~ h  = 2 / 3 + ~ ' = / 3 ( 5  + 1). This can be seen by integrating 
G(r, h, T) once with respect to r to obtain the susceptibility and then by 
integrating twice with respect to h to obtain the free energy. On the other 
hand, in the Bose gas when d > 4, the free energy o~(t~o, T) has a scaling 
form which contains a term proportional to t2-% in addition to the expected 
term proportional to t2-"~, i.e., 

o~(tz0, T) ~ t2-%Wl(lzo/ t  ~~ + t2-%W2(lzo/t Bo) 

Since the correlation function for the Bose gas has a scaling form, we must 
ask what is wrong with the type of analysis described above and where does 
the second term come from. The answer lies in the fact that if the second 
order term in the expansion for the correlation length near the critical point 
(~:-~ ~ tv[1 + t x +---]) is included in the analysis, the correct form for 
o~(/z0, T) will be obtained. Thus the term proportional to t2-% in the free 
energy of the Bose gas when d > 4 is a correction to scaling that arises because 
of a second-order term in the expansion for the correlation length. 
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